
Attacking Machine Learning Models for Social
Good ?

Vibha Belavadi1, Yan Zhou1, Murat Kantarcioglu1, and Bhavani Thuriasingham1

University of Texas at Dallas, Richardson TX 75080, USA

Abstract. As machine learning (ML) techniques are becoming widely
used, awareness of the harmful effect of automation is growing. Especially,
in problem domains where critical decisions are made, machine learning-
based applications may raise ethical issues with respect to fairness and
privacy. Existing research on fairness and privacy in the ML community
mainly focuses on providing remedies during the ML model training
phase. Unfortunately, such remedies may not be voluntarily adopted
by the industry that is concerned about the profits. In this paper, we
propose to apply, from the user’s end, a fair and legitimate technique to
“game” the ML system to ameliorate its social accountability issues. We
show that although adversarial attacks can be exploited to tamper with
ML systems, they can also be used for social good. We demonstrate the
effectiveness of our proposed technique on real world image and credit
data.

Keywords: Adversarial Machine Learning · Adversarial Attacks · Arti-
ficial Intelligence Fairness · Data Privacy .

1 Introduction

Increasingly, machine learning (ML) models have been deployed in many critical
applications ranging from credit scoring to triaging patients for emergency care
(e.g., [19]). Unfortunately, using ML models for critical decision-making tasks can
raise fairness and privacy concerns. For example, an ML model used to predict
criminal recidivism has been shown to be biased against a certain subgroup [25].
In other cases, ML models could be used to predict some sensitive information. For
instance, it has been shown that ML models could predict sexual orientation based
on Facebook likes and/or profile images [30]. The sexual orientation information
by itself may be sensitive and even the existence of an accurate ML model could
result in significant privacy loss.

To address some of these issues, there is an active ongoing research on fairness
and privacy in ML. The proposed techniques range from new algorithms that
produce fair ML models (see the survey for more details [8]) to differentially
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private machine learning models that protect individual privacy (see the survey
for more details [15]). Unfortunately, most of these techniques require the buy-
in of the organization that is deploying the ML model and may not be easily
leveraged by end users in the already deployed ML models.

Although, some existing privacy regulations such as GDPR [9], if requested,
require ML based decisions to be audited by humans. Still, as the recent research
indicates, it is not always possible for humans to detect potential biases in the
ML models (e.g., [2]) even if the ML decisions are explained using explainable
AI techniques.

In this work, we propose a complementary approach that tries to protect
individual privacy and increase fairness by “attacking” the ML model directly.
In other words, the user may modify some of his/her data, the input to the
ML model, so that the privacy sensitive decisions that could be generated by
the ML model are impacted and the potential bias of the ML model is reduced.
Our approach is based on the observation that many of the ML models are not
robust against adversarial attacks that modify inputs to the ML models (e.g.,
adding background noise to deceive an image classifier). Therefore, such approach
can be used to hinder ML models that try to predict sensitive information and
increase fairness by changing “biased” decisions without any cooperation from
the organizations that deploy the ML models.

Compared to traditional adversarial machine learning settings, in this context,
we want to make sure that our attacks are ethical and legal. In other words, it
may be illegal to lie about your income in a credit card application but it is
acceptable to get a free checking account from a bank to improve your credit
score. To address this challenge, we carefully define the cost of data modification
in the developed “adversarial” attacks so that illegal, unethical, and unfeasible
modifications are not considered during the “attack”.

The main contributions of this paper could be summarized as follows:

– We provide a framework that improves privacy and fairness without the
cooperation of the ML model owners.

– Our framework is carefully designed by specifying appropriate cost functions
to only consider data modifications that are legal and ethical.

– We empirically show the utility of this framework in two different applications
(image classification and credit application).

The rest of the paper is organized as follows: in Section 2, we discuss the related
work. In Section 3, we provide a generic framework that shows how to deploy
adversarial attacks for improving privacy and fairness and show the initiation of
this generic model in two application domains. In section 4, we show the utility
of the proposed framework in two different applications via extensive empirical
evaluation. Finally, in section 5, we conclude with the discussion of our results
and the future work.



Attacking Machine Learning Models for Social Good 3

2 Related Work

Adversarial attacks have become a major threat to applications that heavily rely
on the integrity and accuracy of machine learning models. Adversarial learning
has been an active research area for years [10, 21, 17, 35, 4, 34], but only catches
more awareness as the deep learning technique becomes popular. Recent studies
on adversarial attacks mainly target gradient-based attacks against deep neural
networks for image classification [28, 13, 23, 5, 6].

More recently, concerns on adversarial attacks are being raised in other
machine learning application domains such as finance and health care where
modifying data is more restricted by data domain constraints [14, 24]. Ballet et
al. [3] demonstrate how adversarial samples can be crafted for tabular data in
the finance domain. They discuss the unique challenge specific to models trained
on tabular data: how to make the modified sample, such as a loan application,
remain credible and relevant for a potential expert eye? Unlike image data,
tabular features are not interchangeable and less readable. For people with expert
knowledge, only a small subset of features is most critical when making decisions.
Therefore, adversarial attacks should avoid this subset of important features
when modifying samples. An empirical study on tabular data attacks and their
detection and mitigation by model interpretation and reducing attack vector size
has been presented in [16].

The influence of adversarial attacks has also been investigated in the context
where users can game machine learning systems to gain or protect for better
social, economic, moral, and political advantages [24, 18]. For example, Protective
Optimization Technologies (POTs) provide the users of machine learning systems
with tools to counter or contest the biases and discriminatory harms caused by
these systems [18]. For dishonest users gaming the system to gain advantages, such
as the approval of a loan application, features critical to the final decisions can be
identified and verified to mitigate this kind of attack against the decision-making
systems [24].

The threat of adversarial attacks in the applications of computer vision,
ranging from self-driving cars to surveillance and security, has become a heated
topic recently. A detailed survey can be found in [1]. For the purpose of poisoning
attacks, backdoors and patches—digital patterns and their physical realizations
deliberately inserted into images to cause misclassification—have been heavily
studied in image classification [12, 22, 31].

Deep Learning has become the backbone of various face recognition systems
offered by Amazon, IBM, Google, Microsoft and other companies like FacePlus-
Plus. Wang & Kosinski [30] applied Deep Learning to test whether the sexual
orientation of a person can be accurately predicted better than a human predict-
ing it. They claim that upon transfer learning with VGGFace, they are able to
predict sexual orientation with a better accuracy than the human. In wake of
such claims, it becomes imperative to be able to safeguard sensitive attributes
identifiable from images from such black box models. One such approach is
using adversarial examples for good as done by [27]. They have used DCGAN to
generate glasses to fool the state-of-the-art face recognition systems. They have
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also proposed a general framework where anyone can train their model with a
set of generator and a discriminator to create adversarial examples that can fool
any machine recognition systems of choice for face images.

Our work is different from these major lines of research in that our “attacks”
are strictly constrained to the set of feasible instances to which a user data profile
can be legitimately modified to achieve fairness and protect privacy. In addition,
we take into account the cost of data modification so that changes made to the
data would be most feasible and least expensive to the end user. Our objective is
to legitimately “attack” the system to mitigate its inherent biases with the least
disruption to both parties that must adhere the terms of the contract.

3 Modeling Socially Good Adversarial Attacks

Given a machine learning model f , an instance (x, y) where x is the feature
vector for the instance (e.g., a vector of real numbers representing an image) and
y is the class value (e.g., y=’Heterosexual’). x can be modified to x′ by the user
such that

arg min
x′

c(x, x′)

subject to x′ ∈ Fx, f(x′) = t (1)

for a set of feasible instances Fx, cost function c that measures the cost of
modifying the original instance x by the user, and the desired target class t.

It is important that the instance x′ can only adopt modifications that are
ethical. Therefore, for a given context, we want to make sure that the set of
possible modification Fx is carefully defined. For example, in the case of image
processing, we may want to find x′ so that the changes to x can be done by
adding “eyeglasses”. In other words, we may want to make sure that by putting
a pair of eyeglasses to an image, a ML model that predicts sexual orientation
can be fooled without significantly changing the overall image.

In other domains, there may be other constraints. For example, for a credit
card application, it may be illegal to lie about your income. At the same time,
opening a new free checking account may be a totally valid and ethical change,
especially if this change improves the chance of getting the credit application
approved. Therefore, it will be crucial to define the Fx correctly in different
contexts.

In addition, to correctly identify Fx, we need to carefully define the cost
function c that guides the modification. For example, in credit card application,
reducing the existing debt to income ratio may help with the application but it
may not be feasible due to the associated monetary cost.

Finally, the attack target t should be carefully designed. For example, for
credit application, the t could be the “approved” status. Below, we discuss how
our framework could be applied in two important application domains: image
classification and credit application evaluation.
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3.1 Ethical and Practical Adversarial Attacks for Image
Classification

In the case of image classification, we would like to achieve multiple goals. First,
we would like the modifications to be concentrated on only certain parts of the
images. For example, we may want the modification to be able to printed on a
face covering that is commonly worn during covid-19 pandemic. Alternatively, we
may want to consider modifications that can be printed and shown on eyeglasses.
Therefore, we require the modification to be part of a set Xm (i.e., modifications
concentrated around the eye of the user). In addition, we would like to make sure
that the modification ε is bounded appropriately in some norm.

arg min
ε

f(x+ ε) = t

subject to ‖ε‖ ≤ δ, ε ∈ Xm (2)

3.2 Ethical and Practical Adversarial Attacks for Classification
with Discrete Attributes

In many domains such as credit application, many of the attributes could be
discrete. In addition, due to legal and ethical concerns, we may want to avoid
changing certain attributes. In such settings, for each attribute k that could
be legally modified, we define the cost of those feasible modifications via cost
matrix Cki,j . For attribute k, keeping Aki the same has zero cost (i.e., Cki,i = 0).
On the other hand, infeasible modifications would have cost of infinity ∞, and
the remaining modifications could be assigned appropriate cost value Cki,j (i.e.,

cost of changing attribute Aki to Akj ). For example, if the credit applicant has no
cell phone, getting a cell phone could be a costly but a feasible transformation.
On the other hand, getting rid of the cell phone subscription may not be feasible.
Using these observations, we can rewrite Equation (1) as follows:

arg min⋃K
k=1({ik,jk})

∑K
k=1 wk · Ckik,jk

subject to f(M(x)) = t

where M represent the set of modifications that is applied to each attribute (i.e.,

M =
⋃K
k=1({ik, jk})), K is the total number of attributes, and wk is the relative

weight of the attribute.

4 Experiments

In the next two sections 4.1 and 4.2, we present the experimental results on the
CelebA dataset and the German Credit dataset that illustrate how our proposed
framework can be applied in practice.
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4.1 Methodology and Experimentation for CelebA dataset

Dataset creation
We train our image classifier on a subset of data from the public CelebA dataset
[20]. CelebA dataset is a large scale face-attribute dataset of 202,599 face images
from 10,177 celebrity identities with large pose and background variations. The
CelebA dataset is richly annotated with 5 landmark locations and 40 binary
attributes like ’Arched Eyebrows’, ’Eyeglasses’, ’Gender’, ’Smiling’, ’Wearing Hat’
etc. We preprocess our training dataset by first extracting 68 facial landmarks
using the dlib features from the target image. If an image has no dlib features:
either because the image has no facial landmarks or because the face is too
small to be detected, we eliminate the image. We then scale the image for
convergence during the training process. We also augment our dataset to consider
rotation, random cropping, and horizontal flip variants of the same image. By
data augmentation, we intend to artificially increase the data size and thus
ensure our target model is generalizable on real data. Figure 1 demonstrates the
different image augmentation techniques used. For each original image, we use
four augmented images for the training process.

Fig. 1. Data Augmentation used to improve classifier accuracy.

Model training
For our experiments, we have chosen the concept of Gender to train and generate
our ethical adversarial examples. 1 We trained our gender model with 20,000
male and 20,000 female examples using transfer learning [33] on the VGGFace
model with VGG16 architecture [29]. We chose to transfer learn on the VGGFace
model as it has been trained on 2.6 million faces of 2,622 celebrities and hence

1 Although the gender information is not privacy sensitive, we use this as a substitute
for more privacy-sensitive concept such as sexual orientation.
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can robustly extract the high level facial features from our images. In our custom
model, we first extract the model features from the penultimate layer in our
model. We do so by freezing the blocks (specifying their learning rate to be 0).
These features are then fine-tuned and further trained by passing them through
the final convolution block and the three custom convolution blocks defined
on top of it. The final convolution block has relatively smaller learning rate
for fine-tuning purposes compared to the custom convolution layers. We train
our model using softmax loss. For comparison purposes, we have also trained a
gender model on the inception v3 architecture, though our adversarial attacks
will be primarily on our custom VGG16 model. Table 1 presents the training and
validation accuracy of the VGG16 and the inception v3 architectures. As can be
observed, the gender concept is successfully learned for the CelebA dataset.

Table 1. Determining gender on the basis of the image

model f train acc f val acc

inception v3 model 97% 93%
VGG16 model 94.75% 94.44%

Attack mechanism
We use the attack mechanism developed in [26] to attack the gender concept using
the artifact of eyeglasses. We first align our data sample to be attacked using
target landmarks (canonical pose marks). Once the data is aligned, we choose
good candidate images for attack and preprocess them. In our setting, an image
is a good candidate image if 1) it is classified correctly without any perturbation
and 2) the difference in probability between the correct and incorrect classes is
more than 3%. We chose the 3% threshold as we want the classifier to be able
to confidently predict the class better than random guessing (50% probability).
3% ensures that the winning probability of the correct class is 51.5% and the
other class is 48.5%. We then normalize our images by subtracting the standard
normalization constant from them.

To satisfy the constraint based nature of our attack, we perform modifications
only on our artifact (eyeglasses) added to the face. We ensure this by limiting
perturbation area on the artifact’s location on the image. In the case of our artifact,
i.e eyeglasses, we focus around the eyes in the specific location of eyeglasses.
Before performing the attack, we first initialize our artifact (eyeglasses) to a set
of random starting colors to provide an “easy” starting point for perturbation.
If any of the starting colors causes change in the original classification, we hold
on to that specific initialization for our attack, else we randomly choose one
from the set. We show an example of initialization in Figure 2, where we have
the eyeglasses artifact before and after initialisation. Given the exact location
of our artifact, we selectively normalize the gradients by replacing them with
0 in non-artifact areas of the input and normalizing them with respect to the
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Fig. 2. Random color initialization of our artifact

maximum gradient value otherwise. Once our gradients are normalized, we then
perturb them by taking a small step-size in the direction of the gradient. We keep
adding the perturbations to the gradient till we flip at least half of the images of
the batch. Since we previously initialized the gradients of non-artifact based areas
with 0, we guarantee to perturb only the gradients of the artifact region. For
this experiment, we chose 279 female candidate images and 266 male candidate
images. In both cases, we were able to successfully attack all the chosen images
and achieve an attack success rate of 100%. Some of the adversarial examples
and their corresponding base images are shown in figures 3 and 4.

Fig. 3. Examples of base images

Fig. 4. Examples of adversarial attack images with glasses
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Our results indicate that the adversarial attacks in the context of image classi-
fication can be easily used to hide sensitive information (e.g., gender information)
that can be inferred by the image classification models.

4.2 Methodology and Experimentation for German Credit Dataset

Dataset creation
For evaluating our framework on discrete data, we chose Statlog (German Credit
Dataset) [11]. The German Credit dataset has clearly defined attributes with
respect to the ground truth. The dataset, however, is highly imbalanced with 70%
of the attributes being good credit and 30% being bad credit and this imbalance
needs to be handled with over/under sampling techniques. For the preprocess
step, we encode the categorical features with one-hot encoding and normalize
the numerical attributes. After the preprocessed data is fed to the pipeline, we
handle the data imbalance by first over-sampling using SMOTE [7] and then
under-sampling using the Edited Nearest Neighbours [32] technique. We train
our models on this pipeline using 10-fold cross validation. Table 2 lists the best
case validation accuracy of the select ML models on the German Credit dataset:

Table 2. Complete Training Data balanced with SMOTEENN

Classifier Validation Accuracy F1 score

RandomForest 76% 84%
AdaBoost 73% 82%
XGBoost 75% 84%

SVM 75% 83%
RidgeClassifier 72% 80%

Attack Mechanism
We choose 125 samples from the original test data that have been correctly
classified as ”Bad Credit”. Our objective is to find the minimum cost multi-
attribute change that will flip the classification of our examples to ”good credit”.
We start by changing only one attribute at a time. After that we keep adding
other attributes to be changed simultaneously. For example, in our first pass, we
modify only attribute i1 and record which samples change their classification. In
the second pass of our algorithm, we change attributes i1 and i2 together and
record the flipped samples. In the nth pass, we will be changing n attributes
i1 . . . in. We are only allowed to change an attribute from one of it’s legitimate
domain values to another. At each pass, we also record the transformation tuple
set that caused target classification. Suppose we are changing two attributes
i1 (with subclasses j and k) and i2 (with m and n). A possible transformation
instance for n = 2 attributes may look like: ((Ai1j , Ai1k ),(Ai2m, Ai2n )). We discuss
in detail about our cost functions for feasible transformations in the next section.
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A transformation tuple based attack is similar to the adversarial example
creation for images, in the sense that we cause imperceptible changes to the
pixel values of our image to change the classification of our model. The difference
between the two is that in the discrete scenario we change our data one attribute at
a time: initially changing one attribute and recording if the classification changes,
then, changing two attributes simultaneously and recording the classification
change and so forth. Our algorithm is model agnostic and does not depend on
the ML model’s internal loss function formulation to work.

In this setting, we define the feasible instance space that includes only the
following six modifiable attributes: Duration, Credit amount, Purpose, Savings,
Other installment plans, and Telephone. Since our algorithm involves multi-step
multi-attribute change, the order of attribute change has impact on both speed
and efficacy. We prefer the more sensitive attributes (attributes that easily cause
change in the classification) to be changed early in our algorithm to ensure that
we have the minimum attribute change for our examples. A simple way to decide
the sensitivity of the attributes is to change each of the attributes individually
and see which attributes have the highest attack success rate. Table 3 shows the
attack success rate for our six attributes ordered from the highest success rate to
the lowest success rate.

Table 3. Success rate of flipping classification result when one attribute is changed
(out of 125)

Attribute Attack success rate

purpose 20%
duration 10.4%
savings 8.8%

credit amount 6.4%
telephone 4.8%

other installment plans 4%

Given the ordering of the attributes as shown in the table above, we run the
multi-pass attack. We store those transformation tuples that cause the model
to flip classification from ”Bad” credit to ”Good” credit. Table 4 gives us the
attack success rate when we change more than one attribute. As we can see in
the results, as the number of attributes changed increases, the attack success
rate also increases. When we change six attributes, our attack success rate is
90%. However, this doesn’t capture the cheapest possible attribute change for
any given example which will be described in the next section.

Cost Formulation
Given a list of transformations that can be performed on an example, we also have
the constraint that our attribute-changes should be drawn from a pool of feasible
and ethical attribute modifications. To get a list of feasible transformations for
each of the attributes, please refer to the appendix. To address the feasibility
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Table 4. Success rate of number of examples flipped (out of 125)

Num attr changed Attack success rate

2 52.8%
3 60.8%
4 69.64%
5 80.8%
6 90.4%

of individual attribute changes, we formulate a cost matrix C and assign a cost
penalty to every attribute change. This cost penalty will be extremely large (close
to infinity ∞) to discourage certain attribute change and certain sub-attribute
changes. For other changes, the cost matrix formulation assigns small non-negative
float value (between 0 and 1) as the cost. For example, for attribute i (with three
subclasses j, k and z), the feasible attribute changes are: j to k, k to z, then Cij,z,

Ciz,k, Cik,j and Ciz,j are all ∞ since they are infeasible changes. We also assign a
weight wi to each attribute i to weigh the influence of that particular attribute in
our cost formulation. Assume, each example e can have a set of transformation
tuples M = (m1,m2, ...) such that f(M(x)) = t, where t is good credit. Given our
cost formulation mechanism, (C and w), the cost required to get a classification

flip from bad credit to good credit is arg min⋃K
k=1({ik,jk})

∑K
k=1 wk ·Ckik,jk , where

K is the total number of attributes. We have three different cost formulation
mechanisms for C and w that will be discussed below.

To understand the impact of the cost function, we experimented with three
types of cost functions for the cost matrix formulation of attribute change. In
all the three formulations, the infeasible attribute changes are assigned ∞ cost.
The first cost function f1 treats every feasible attribute change as equal. For
example, if in one of our transformation tuple M , we are changing attribute i
from subclass j to subclass k and attribute l from subclass m to n, then our
cost function will ensure Cij,k = Clm,n and wi = wl. The second cost function f2
treats different attribute change differently, however each individual attribute will
have a fixed cost for changes within the sub-classes. Going back to our example
of attribute i with three subclasses (i, j and z), if the feasible modifications
for i are j to k, and k to z, then Cij,k = Cik,z. However, for different attributes

i and l, Cij,k 6= Clm,n and wi 6= wl. The third cost function f3 treats every
attribute and sub-attribute change independently. The motivation behind this
cost function formulation is that it might be easy to move between specific
changes in sub-attribute classes for the same attribute class compared to others.
So in the third case, Cij,k 6= Cij,z, C

i
j,k 6= Clm,n and wi 6= wl. Figure 5 shows

the relationship between minimum attributes required to be changed and the
percentage of examples that can be flipped. We have plotted this comparison
for our three different cost formulations. As we can see the distribution of the
percentage has flattened with the introduction of variable weighting component
into cost function formulation. Figure 6 gives the percentage of examples flipped
as a function of the maximum cost possible (i.e., the maximum allowed cost of
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changing all the feasible attributes without considering transformations with
infinite costs). The fixed cost formulation has a very bumpy and uneven plot. As
we introduce attribute weighting and non-uniform cost formulation for attribute
changes, the graph becomes more smooth. As expected, as the “transformation
cost” increases, more of the instances can flipped.

Fig. 5. Percentage of total attributes flipped vs min. attributes changed)

Fig. 6. Percentage of total attributes flipped vs percentage of maximum cost
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5 Conclusion

In this paper, we present an approach to protecting individuals’ privacy and
fair opportunity by encouraging the end user to “game” a machine learning
system in a legitimate manner. The idea is adapted from the adversarial learning
problem that studies the vulnerability of machine learning systems to adversarial
attacks—modifying data to foil the learning system. By incentivizing positive
changes to the user’s data profile, we can “convince” the learning system to make
a different but fairer decision. If used properly, we show that this hostility against
machine learning systems can become a powerful tool at the end user’s disposal
to protect and improve privacy and fairness. Our empirical results indicate that
this idea can be successfully used, in a constrained way, to protect individuals
against potentially harmful biases embedded in ML systems.
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Appendix A

We consider the following attributes to change in our German Credit data:

1. Purpose: For getting the loan ex. car(new), car(old), repairs, education, etc.
2. Duration: Increase/decrease the duration (in months) to see the change in

granting loan.
3. Credit amount: Increase and decrease the credit amount granted as a matter

of percentage of original amount. ex: 1.05x, 1.10x, 0.90x, 0.85x where x is
the current amount.

4. Savings account/bonds: Change the number of savings and bonds from None
(A65) to ’...100 DM’ (A61).

5. Other installment plans: Change from None (A143) to Bank/Store (A141/A142).
6. Telephone: Change the ownership of telephone from None (A191) to registered

in user’s name (A192).


